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When a shock moves in a non-uniform medium, its motion is influenced both by the 
non-uniformity ahead of the shock and also by a wave which overtakes the shock. In  
this paper the overtaking wave is examined in an analytic manner by considering its 
formation and subsequent propagation. This analysis is then combined with the known 
‘freely propagating’ description of the shock motion, in which the overtaking wave is 
ignored, and results in a description of the shock motion in integral form. For the 
particular problem of a strong shock propagating in a medium with a power-law 
density variation, the freely propagating shock law has previously been compared 
with the available similarity solution. The estimate of the effect of the overtaking 
wave presented in this paper is shown to provide a significant improvement to the 
description of the shock motion in this instance. 

1. Introduction 
This paper is concerned with the one-dimensional motion of a strong shock wave 

moving into a medium which is a t  rest and a t  uniform pressure, but has a variable 
density. One of the authors (Chisnell 1955) determined a simple law of propagation 
for the shock by taking account of the interaction of the shock with the density varia- 
tion ahead of the shock, but ignoring the effect on the shock of disturbances from the 
non-uniform flow behind the shock. This simple description of the motion of the shock 
will be referred to  as ‘freely propagating’. The same result was obtained in a more 
elegant manner by Whitham (1958), by applying the differential relation valid along 
an overtaking characteristic to the flow variables behind the shock. 

Sakurai (1960) considered the motion of a shock moving outwards through a star. 
The shock is considered to  be plane and the density of the star varies according to a 
positive power law in distance from the star boundary. The shock becomes strong as it 
approaches the boundary of the star, and the strong shock equations permit a similarity 
solution in this neighbourhood. Nine cases of the similarity solution were given by 
Sakurai, corresponding to gases with ratios of specific heats y = 1.2, 1.4 and + and a 
power-law density distribution with exponents 4, 1 and 2. The freely propagating 
shock law was compared with the similarity solution and found to be in reasonably 
good agreement; the agreement was worst in the case y = 1.2 for a density exponent 
of 2, where the shock law exponent was in error by 11 yo. 
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Yousaf (1978) found the strength of the overtaking wave numerically from the 
similarity solution, and considered its effect on the freely propagating shock law. He 
showed that the resulting modification to  the freely propagating law brings i t  into 
exact agreement with the similarity solution. 

The present paper studies the overtaking wave in an analytic manner for an arbitrary 
initial density distribution. I n  $ 2 a derivation of the freely propagating shock law is 
obtained by considering the interaction of the shock with an elementary density 
discontinuity and integrating the resulting differential relation between shock strength 
and density. At this interaction a reflected disturbance is generated which propagates 
along a characteristic into the flow behind the shock, and a density discontinuity of 
changed strength propagates along a particle path behind the shock. The flow behind 
the shock is determined by the interaction of the two waves formed by the reflected 
disturbances and the density discontinuities. These two waves interact and generate a 
third wave, which propagates along the other set of characteristics and overtakes the 
shock. The analysis of the interaction of the two waves is made tractable by making 
the assumption used in the derivation of the freely propagating shock law; namely 
that the overtaking wave may be ignored. This description is used in $ 3  to estimate 
the strength of the overtaking wave and its effect on the motion of the shock. The 
result is in the form of an integral; the integrand contains a factor which depends on 
the geometry of the characteristics, and this in turn depends on the choice of initial 
density distribution. 

In  9 4 the approximate theory of the two previous sections is applied to  the density 
power-law problem solved by Sakurai. The freely propagating shock law exponent 
and the modification to it produced by the overtaking wave are determined. For each 
of the nine cases considered by Sakurai, these two approximate exponents lie on either 
side of the exact exponent, with the error in the modified exponent typically six times 
as small as the error in the freely propagating exponent. It is possible that the shock 
path in problems for which no similarity solution exists may be shown to lie between 
the freely propagating shock path and a modified path determined by an approximate 
description of the overtaking wave. 

2. The freely propagating shock motion 
A shock wave moves in the positive x-direction into a medium at rest that has a 

uniform pressure but a non-uniform density po(x). The motion of the shock is affected 
both by variations in the density ahead of the shock and by an overtaking wave. The 
overtaking wave propagates along C, characteristics and is produced by disturbances 
in the non-uniform flow behind the shock. I n  this section a simple description of the 
flow is obtained by considering the shock motion to be influenced only by the density 
variations ahead of the shock. The overtaking C, disturbances are suppressed, and 
the resulting description of the shock motion and the flow behind the shock is called 
freely propagating. 

The freely propagating description of the flow is available for shocks of any 
strength. The application in $ 4 to a power-law density distribution relates to strong 
shocks. Accordingly we derive the shock propagation law using the simpler form 
of the Rankine-Hugoniot equations valid for strong shocks. I n  terms of the shock 
speed li, the density po ahead of the shock, and the ratio of specific heats y ,  
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these equations give the pressure, density, fluid and sound speeds behind the shock 
as 

where 
s =  (3). + 

When the shock encounters an incremental change Sp, in the density of the medium 
there is an associated shock speed increment SU, and the increments in the flow 
variables behind the shock are given in terms of these two increments by (2.1).  I n  an 
exact analysis these increments in pressure and fluid velocity are supported both by 
a C- disturbance generated by the interaction and by an overtaking C, disturbance. 
I n  the freely propagating description used in this section the C, disturbance is sup- 
pressed, and the pressure and velocity increments are therefore related by 

Sp = -pa&, (2.3) 

a relation valid across a C- disturbance. Combining (2.3) with (2.1) in differential 
form gives 

or U = K ~ o P ,  with K a constant. 
We now consider the disturbances in the flow behind the shock wave in the freely 

propagating description. For the C_ disturbances generated by the shock, the pressure 
and velocity increments occurring in (2.3) may be expressed in terms of p ,  by use of 
(2.1) and (2.4) as 

The minus suffix denotes a C- disturbance. The density increment across the C- 
disturbance is 

and the total density increment Sp behind the shock is given in terms of Sp, by (2.1). 
The difference between these two density increments is developed across a contact 
discontinuity, or C,  characteristic, which moves with the fluid and has strength 

1 

Y s p ,  = sp - sp -  = asp, a = 1--(1-2/3).  (2.7) 

The C- and C ,  disturbances, whose strengths when generated by the shock are 
given by (2.5) and (2.7), interact in the flow behind the shock and produce the over- 
taking C ,  wave which is coilsidered in § 3. To find the strength of either the C-, or the 
C,, disturbance a t  a general point in the flow, its departure from its shock-generated 
value is found by considering the sequence of interactions it undergoes with dis- 
turbances of the other type. I n  this section we need to discuss only the interaction of 
C- and C,  disturbances, but as it will be necessary to include a C ,  disturbance in 9 3 
we consider the general interaction involving all three disturbances. Let elements of 
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FIGURE 1. The general interaction a t  a point in the non-uniform flow behind the shock. The 
C,, C,, C- disturbances have discontinuities S,u+, 6,pc, 6,u- across them before the interaction 
and S,u+, S,pc, S,u- after the interaction. In $ 2  the C+ disturbance is suppressed. Also shown 
are two particle paths on either side of the C, disturbance; adjacent particles on these paths 
have the same velocity and are at  the same pressure before they cross the C, and C- disturbances 
and again after they have crossed the disturbances. 

the C-, C,, C, waves have strengths &up, alp,, 6,u+ before the interaction and &,u-, 
S,p,, 6,u+, respectively, after the interaction, as illustrated in figure 1.  A fluid particle 
on one side of the C, characteristic experiences velocity increments 6,u- and 6,u, as 
it passes through the interaction region, whilst a particle on the other side of the C, 
characteristic experiences increments S,u, and 6 , ~ ~ .  The sums of these pairs of 
increments must be the same, as the velocity is continuous across a C, characteristic. 
The corresponding sums of pressure increments, given by (2.3) for a C- disturbance 
and a similar equation without the minus sign for a C, disturbance, are also the same. 
These two relations determine the changes in strength of the C- and C, disturbances as 

where p is the density between the incident C- and C, disturbances. The density 
increments across the C- and C, disturbances are given in terms of the pressure 
increments by (2.6)) and a comparison of the density increments experienced by fluid 
particles on either side of the C, characteristic gives 

1 
62 P c - 61 P c = p 8, P c ( 4  P+ + 81 P-) . 

These interaction results may be used to determine the strengths of the C- and C, 
disturbances at  a general point P in the flow. I n  figure 2 the C- disturbance leaves 
the shock a t  Q and the C, disturbance leaves a t  R. Equation (2.9) gives the change in 
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FIGURE 2. The shock path (R ,  W ,  Q ,  S ,  0) is shown for motion in a gas having y = 1.4 and a 
linear density gradient h = 1. The arbitrary constants A ,  B of (4.2) have been chosen so that the 
shock passes through Q, with XQ = - 1, t~ = - 1.  The C- characteristic through Q and the C ,  
characteristic through S ,  which has t s  = - 0.1, are shown meeting at P .  The C ,  characteristic 
through P leaves the shock a t  R. The C- characteristics QP and W V  are straight lines, see (4.6). 

the strength of the C, disturbance a t  any of its interactions between R and P. Along 
a particle path, S,p++S,p-, which occurs in (2.9),  is the total density increment Sp 
encountered by the C, disturbance. Hence the equation may be recast as 

(2.10) 

and gives the change in strength of the disturbance a t  a general point of its path. 
Integration from R to P gives the strength of the C, disturbance a t  P as 

(2.11) 

by use of (2 .7) .  This result does not depend on the freely propagating assumption, but 
i t  should be noted that the derivation remains valid if the assumption is used by 
putting S,p+ in (2.9) equal to zero. 

To determine the strength of the C- disturbance a t  P the freely propagating assump- 
tion is needed. An incremental change in the strength of the C- disturbance S(Su-) as 
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it moves along the C- charactei-ist,ic from Q to P is given by (2.8), with S,u+ = 0 for 
the freely propagating description. Further, in the absence of C, disturbances, the 
density variation along the C- characteristic from Q to P is due solely to C, dis- 
turbances, and is measured in the opposite sense, Sp = - Spc. Hence (2.8) becomes 

1 
6(SU-)  = - - sp su-, 

4P 

and after integration from Q to P gives 

(2.12) 

(2.13) 

The results for the strengths of the disturbances at  P involve the density a t  P,  
which is now found by a further integration along the C- characteristic from P to Q. 
As already noted, the density variation along this path in the freely propagating 
description is due only to  the C, disturbances Spc. Hence an integration of (2.11) 
starting a t  P and R and terminating with P and R both a t  Q yields 

(2.14) 

For use in 54 we also note the results for fluid and sound speed in the freely propa- 
gating description. Proceeding along the C- characteristie from Q on the shock, only 
C, disturbances are encountered. Hence there is no variation in the pressure or fluid 
speed along a C- characteristic in the freely propagating description, and use of (2.14) 
for the density variation yields 

(2.15) 

The strengths of the C, and C- disturbances a t  P, given by (2.11) and (2.13), may, 
with the help of (2.14), (2.5) and (2.1), be rewritten finally in terms of the density 
behind the shock as 

(2.16) 

These results for the strengths of the C,, C- disturbances, together with the de- 
scription of the shock motion in (2.4), constitute the freely propagating description of 
the flow. In  the following sections these results will be uscd to  obtain a description of 
the overtaking wave. 

3. The overtaking wave 
I n  this section we consider the overtaking wave and formulate its effect on the 

motion of the shock. The wave propagates along C, characteristics and is generated 
in the non-uniform flow behind the shock by the interaction of C- and C, disturbances. 
In  5 2 the simple freely propagating description, which neglects the C, disturbances, 
was used to find the strengths of the C- and C, disturbances. These approximate 
resuks are now used to estimate the strengths of the C, disturbances and to determine 
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the modification to the shock path that they produce. A higher-order approximation, 
in which these values of the strengths of the C, disturbances are used to revise the 
strengths of the C- and C, disturbances, is not considered. 

The change in strength S(Su+) of a C, disturbance, due to  its interaction with a C, 
and C- disturbance, is given by (2.8) as 

with Spc and Su- given by (2.16) in terms of density increments immediately behind 
the shock. This equation is to be integrated along the C, characteristic which meets 
the shock a t  8 (see figure 2). The strength of the C, disturbance is written in a form 
similar to (2.16) for the other disturbances as 

For a given density distribution, any two of the shock points Q, R, 8 determine the 
characteristic intersection point P,  so that only two of the densities p(Q), p(R), p(S) 
just behind the shock are independent. This enables integration variables p(R), p(Q) 
contained in the first term on the right-hand side of (3.1) and the variables p(R), p(S) 
contained in the second term to be transformed to p(&), p(S) with 

(3.3) 

The minus sign arises in the first equation because, for the assumed monotonic density 
distribution, the partial derivative in the Jacobian is negative. Equation (3.1) can 
now be rewritten as a differential equation for au+(P)/ap(S), with the help of the 
above equations and (2.14), (2.16)) as 

In  this equation p(R) is an assumed function of p(Q) and p(S), and to integrat,e along 
a C, characteristic we note that {p(R)}ia is an integrating factor and p(S) is constant. 
Far from the shock the disturbance has zero strength, and a t  the shock P,  Q and R 
coincide a t  X. The solution is 

(3.5) 

with p(&) = p(S)  a t  the upper limit. This integral will be evaluated in $ 4  for a par- 
ticular functional dependence of p(R)  on p(&) and p(S) arising from the choice of a 
power-law initial density distribution. 

We conclude this section by determining the effect of the overtaking disturbance 
on the motion of the shock. This problem has been previously considered by the 
authors (Chisnell 1955; Yousaf 1974). At the beginning of $ 2  the freely propagating 
shock law (2.4) was derived by requiring that the pressure and fluid velocity increments 
behind the shock be supported solely by a C- disturbance. In  the presence of both C- 
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and C ,  disturbances the velocity and pressure increments behind the shock, given by 
(2.1), will be related by 

(3.6) 

Rewriting Sp- in terms of Su- by (2.3), and similarly treating 6p+, enables du, to be 
determined as 

l l  
su, = - (su + - S(p, U2) . 1 

Y+l Pa 

The shock equations (2.1) enable this result to be rewritten as 

sp su ( y + l ) s  su+. p-o+- = - - 
Po u 2 + s  U ’  

(3.7) 

which is the required modification of the freely propagating law (2.4). Rewriting Ju, 
in terms of a density increment, and making further use of (2.1) and (2.2), leads to 

(3.9) 

with the partial derivativegiven by (3.5). This result shows how the freely propagating 
shock law U = KPOP, has the exponent p modified by an overtaking wave, and is valid 
for any initial density distribution. It will be applied in 5 4 to the power-law density 
distribution. 

4. An initial power-law density distribution 
The freely propagating shock law of 5 2 gives a description of the shock motion in 

terms of the density ahead of the shock and does not require the distribution of the 
density with distance to be specified. The modified description of the shock motion 
given in $3,  which includes the effect of the overtaking disturbance, does not have 
this property. This is because the choice of the initial density distribution determines 
which triplets of C-, C,, C, characteristics, meeting the shock a t  Q, R, S respectively, 
are concurrent. The dependence of the overtaking wave on this geometrical property 
is shown by the term ap(R)/i3p(X) occurring in (3.5), the differentiation being a t  
constant p(&). An initial power-law distribution of density is considered 

POW (-4” (x < O ) ,  (4.1) 
and the modification to the freely propagating shock law produced by the overtaking 
wave is computed. For this particular law a comparison with an exact solution is 
possible. 

We begin by studying the geometry of the shock path and the characteristics. The 
speed of the freely propagating shock is given as K ~ O P  by (2.4), and (4.1) enables U to 
be expressed in terms of x. A further integration provides the shock path and U ( t )  as 
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where A ,  B are constants, and the shock is assumed to arrive a t  x = 0 at t = 0. The 
fluid and sound speeds immediately behind the shock are related to U by (2.1), giving 

2 
a=- B( - t)-b, a = y-l sB( - t)-b. 

Y + l  Y+l (4.3) 

At a general point P i n  the flow behind the shock the fluid and sound speeds are related 
to these shockvalues by (2.15), and after use of (4.1) and (4.2) they may be expressed as 

where tQ,-tR. are the times at  which the shock is a t  Q and R. The equations of the 
characteristics are thus 

where E = - 1 ,  0, 1 for the C-, C,, C, characteristics respectively. 
Integration of the C- and C, characteristic equations from Q and R, respectively, 

determines the co-ordinates of P .  An integration of the C, characteristics from P to S 
on the shock then provides a relation between tQ ,  tR and ts. This result may be ex- 
pressed in terms of densities behind the shock, enabling p(R) to be eliminated from 
(3.5) and the integration with respect to p ( Q )  at constant p(S) to be performed. 

No integrals of (4.5) have been obtained, and a simplifying assumption is adopted 
to avoid extensive computation. The basis for the assumption is that the part of the 
overtaking C, wave which catches up the shock before it reaches the origin is contained 
within a thin layer behind the shock. For any point P in this layer tQ / tR  remains 
reasonably close to  unity. In addition, for the three values of y and the three values 
of h considered, c is not large; its largest value being 0.46 for y = 9, h = 2. Hence 
( t s / tn )"  is close to unity, and we assume it to have this value in (4.5). In consequence 
the slopes of the characteristics a t  P depend only on tQ ,  where Q is the intersection of 
the C- characteristic through P with the shock path. This results in the C- charac- 
teristics being straight lines, and leads to a simple tQ ,  t,, t ,  relationship which is now 
derived. 

We first relate t ,  to tQ and t ,  by considering the C, characteristic joining R to P 
(see figure 2). The C- characteristic joining a general point V on this C, characteristic 
to  W on the shock is 

2 
x y - x w  = -B(- t , , ) -b{l-~(y- l )s}( tV-tw).  (4.6) 

Y + l  

Substituting for x y  in the C, characteristic differential equation, and using (4.2) for 
the shock speed dx,/dt,, leads to 

2 [icy + 1) - (b f$ - 1) + 1) { 1 - * ( y  - 1) s} 1 = Q(y - 1) s. (4.7) 

Integration of this equation, with V ,  W going from R to P, Q respectively, gives 
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A similar integration of the C, differential equation, again making use of the linear 
(x, t)-relation provided by the C- characteristics, provides an alternative form for 
t,/tQ in terms of ts/ tQ. Equating these two expressions for t p / tQ  gives 

and differentiation at  constant t ,  yields the required geometrical relation 

(4.10) 

These results for tR  and its derivative enable (3.5) to be recast as a definite integral. 
The flow variables need to be expressed in terms of the time; the velocities are given 
by (4.2) and (4.3) and the density immediately behind the shock is seen to be propor- 
tional to tb/P by use of (2.1)) (4.1) and (4.2).  Substitution into (3.5) gives 

(4.11) 

Elimination of tR by use of (4.9) and (4. lo),  followed by a change of integration variable, 
leads to 

. (4.12) ab(s - 1)  
2 (y-  l)s{s+ l+ms}’  

b(l-*alP), ,g-1 = 1 + 1 + (m+ I)-] 
q =  l + @  (s-1) 

C =  

This integral provides a measure of the strength of the overtaking wave for an initial 
power-law density distribution. The effect of the overtaking wave on the motion of 
the shock is given by (3.9)) which shows that the shock speed U becomes K ~ o @ * .  The 
constants C and 7 in (4.12) may be simplified by using the definitions of a, P, m given 
in (2.7)) (2.4) and (4.8) respectively. There follows 

1 -s-1 
(4.13) 

s -1  

(2+s) /b+2(2-y) / (y-  1 ) ’  ‘I = 2/b+s/y-  1’ 
p_* = l-DI(v), D = 
P 

which shows the dependence of /3* on the specific heat ratio y and density exponent h 
through the definitions of s, /3, b, [given in (2.2), (2.4), (4.2), (4.12) respectively. 

Calculations for p* have been performed for the nine cases y = 1.2, 1-4, and 
h = 4, 1, 2,  and the results are given in table 1.  In  each case 7 is less than 0.1, and its 
smallness enables the integral to be evaluated in a simple manner. The denominator 
is expanded as a power series, and after integration term by term the series is differ- 
enced with the corresponding series for q = 0, whose sum is - [-lln (1  - [). The 
difference series has a rapid convergence, and at most 7 terms were required to obtain 
the 5-figure accuraoy presented in table 1.  

For comparison, the values of the Sakurai similarity exponent Ps and the freely 
propagating exponent /3 are also shown. In each case /3 is greater than the exact ps, 
and the modified exponent /3* is less than ps and much closer to it. The percentage 
errors in /3 and /3* as approximations to ps are also shown in the table, and in all cases 
the inclusion of the approximate treatment of the overtaking wave improves the 
accuracy by a factor between 3 and 10. The simple treatment of the overtaking wave 
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A = &  A = l  h = 2  

y = 1.2 ps 0.17498 
p 0.18301 (+4.6) 
p* 0.17409 ( -  0.5) 

= 1.4 ps 0.20704 
p 0.21525 ( + 4.0) 
p* 0.20613 ( -  0.4) 

y = $  ps 0.22820 
13 0.23607 f + 3.4) 

0.17040 
0.18301 
0-16800 

0.20214 
0.21525 
0.19957 

0.22335 
0.23607 

0.16545 
+ 7.4) 0.18301 (+ 10.6) 
- 1.4) 0.16021 ( -  3.2) 

0.19667 
+ 6.5) 0.21525 (+ 9.4) 
- 1.3) 0.19080 ( -  3.0) 

0.21779 
+ 5.7) 0.23607 ( +  8.4) 

)* 0.22732 i - 0.4j 0.22081 ( -  1.1) 0.21175 ( -  2.8) 

TABLE 1 .  The values of the Sakurai similarity exponent /Is for various values of the ratio of 
specific heats y and initial density power-law exponent h. These values are compared with the 
corresponding parameter /3 from the freely propagating shock result (2.4) ; is in error by amounts 
ranging from 3 yo to 11 yo. The modified exponent /3*, which takes approximate account of the 
overtaking disturbance, is also given (percentage error in brackets) and reduces the error to 
between 0.4 Yo and 3.2 %. In each case pS lies between /3 and p*. 

thus provides a significant improvement to the freely propagating description of the 
shock motion. The value of the freely propagating exponent p and its modified value 
p* provide bounds in this particular problem for the exact exponent Ps. It is possible 
that bounds for the shock path may be available for more difficult physical situations 
for which no similarity solution exists. 
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